74HC4051; 74HCT4051
 8-channel analog multiplexer/demultiplexer

Rev. 03 - 19 December 2005
Product data sheet

1. General description

The $74 \mathrm{HC} 4051 ; 74 \mathrm{HCT} 4051$ is a high-speed Si -gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). The device is specified in compliance with JEDEC standard no. 7A.

The 74HC4051; 74HCT4051 is an 8-channel analog multiplexer/demultiplexer with three digital select inputs (S 0 to S 2), an active-LOW enable input ($\overline{\mathrm{E}}$), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z).

With $\overline{\mathrm{E}}$ LOW, one of the eight switches is selected (low impedance ON-state) by S0 to S2. With \bar{E} HIGH, all switches are in the high-impedance OFF-state, independent of S0 to S2.
V_{CC} and GND are the supply voltage pins for the digital control inputs (S 0 to S 2 , and $\overline{\mathrm{E}}$). The V_{C} to GND ranges are 2.0 V to 10.0 V for 74 HC 4051 and 4.5 V to 5.5 V for 74 HCT 4051 . The analog inputs/outputs (Y 0 to Y 7 , and Z) can swing between V_{Cc} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features

- Wide analog input voltage range: $\pm 5 \mathrm{~V}$
- Low ON-state resistance:
- 80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation:
- To enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical 'break before make' built in

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Quick reference data

Table 1: Quick reference data
$V_{E E}=G N D=0 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C} ; t_{r}=t_{f}=6 \mathrm{~ns}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
Type 74HC4051							
$t_{\text {PZH, }}$ t ${ }_{\text {PZL }}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	\bar{E} to $V_{\text {os }}$			-	22	-	ns
	Sn to $\mathrm{V}_{\text {os }}$			-	20	-	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	E to $V_{\text {os }}$			-	18	-	ns
	Sn to $\mathrm{V}_{\text {os }}$			-	19	-	ns
Ci	input capacitance			-	3.5	-	pF
$\mathrm{CPD}^{\text {P }}$	power dissipation capacitance (per switch)		[1] [2]	-	25	-	pF
$\mathrm{C}_{\text {s }}$	switch capacitance						
	independent input/output Yn			-	5	-	pF
	common input/output Z			-	25	-	pF

Type 74HCT4051

$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	E to $V_{\text {os }}$				22		ns
	Sn to $\mathrm{V}_{\text {os }}$				24		ns
$t_{\text {PHZ }}$, tPLZ	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	\bar{E} to $V_{\text {os }}$				16	-	ns
	Sn to $\mathrm{V}_{\text {os }}$				20		ns
Ci_{i}	input capacitance			-	3.5	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance (per switch)		[1] [3]	-	25	-	pF
C_{S}	switch capacitance						
	independent input/output Yn			-	5	-	pF
	common input/output Z			-	25	-	pF

[1] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{s}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
[2] For 74 HC 4051 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.
[3] For 74 HCT 4051 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

5. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
Type 74HC4051				
74HC4051N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HC4051D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4051DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HC4051PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC4051BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1
Type 74HCT4051				
74HCT4051N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT4051D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT4051DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HCT4051PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT4051BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

6. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Schematic diagram (one switch)

Fig 4. Functional diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
Y4	1	independent input/output 4
Y6	2	independent input/output 6
Z	3	common input/output
Y7	4	independent input/output 7
Y5	5	independent input/output 5
\bar{E}	6	enable input (active LOW)
V EE	7	negative supply voltage
GND	8	ground (0 V)
S2	9	select input 2
S1	10	select input 1
S0	11	select input 0
Y3	12	independent input/output 3
Y0	13	independent input/output 0
Y1	14	independent input/output 1
Y2	15	independent input/output 2
$V_{C C}$	16	positive supply voltage

8. Functional description

8.1 Function table

Table 4: Function table [1]

Input			Channel ON	
E	S2	S1	So	
L	L	L	L	Y0 to Z
L	L	L	H	Y 1 to Z
L	L	H	L	Y2 to Z
L	L	H	H	Y3 to Z
L	H	L	L	Y4 to Z
L	H	L	H	Y5 to Z
L	H	H	L	Y6 to Z
L	X	X	H	Y7 to Z
H		X	-	

[1] $\mathrm{H}=$ HIGH voltage level;
$\mathrm{L}=$ LOW voltage level;
X = don't care.

9. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{E E}=G N D($ ground $=0 V$).

Symbol	Parameter	Conditions		Min	Max	Unit
$\mathrm{V}_{C C}$	supply voltage		[1]	-0.5	+11.0	V
$\mathrm{I}_{\text {IK }}$	input clamping current	$\begin{aligned} & \mathrm{V}_{1}<-0.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$		-	± 20	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$		-	± 20	mA
Is	switch current	$\mathrm{V}_{\mathrm{S}}=-0.5 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$		-	± 25	mA
$\mathrm{l}_{\text {EE }}$	negative supply current			-	± 20	mA
ICC	quiescent supply current			-	50	mA
$\mathrm{I}_{\text {GND }}$	ground supply current				-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature			-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
	DIP16 package		[2]	-	750	mW
	SO16, (T)SSOP16, and DHVQFN16 package		[3]	-	500	mW
$\mathrm{P}_{\text {S }}$	power dissipation per switch			-	100	mW

[1] To avoid drawing V_{CC} current out of terminal Z , when switch current flows in terminals Yn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Yn . In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed V_{CC} or V_{EE}.
[2] For DIP16 packages, above $70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$.
[3] For SO16, (T)SSOP16, and DHVQFN16 packages, above $70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

10. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Type 74HC4051						
$\Delta \mathrm{V}_{\mathrm{CC}}$	supply voltage difference	see Figure 7				
	$\mathrm{V}_{\text {CC }}-\mathrm{GND}$		2.0	5.0	10.0	V
	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}$		2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	V_{CC}	V
$\mathrm{V}_{\text {S }}$	switch voltage		V_{EE}	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	6.0	1000	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	6.0	400	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	6.0	250	ns
Type 74HCT4051						
$\Delta \mathrm{V}_{\mathrm{CC}}$	supply voltage difference	see Figure 7				
	$V_{\text {cc }}$ - GND		4.5	5.0	5.5	V
	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$		2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	$\mathrm{V}_{C C}$	V
V_{S}	switch voltage		$\mathrm{V}_{\mathrm{EEE}}$	-	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	6.0	500	ns

Fig 7. Guaranteed operating area as a function of the supply voltages

11. Static characteristics

Table 7: \quad Ron resistance per switch for types 74HC4051 and 74HCT4051
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a Yn or \bar{Z} terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4051: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4051: $V_{C C}-G N D=4.5 \mathrm{~V}$ and $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
R ON (peak)	ON-state resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	100	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	130	Ω
$\mathrm{R}_{\mathrm{ON}(\text { rail }}$	ON-state resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }}$				
		$\mathrm{V}_{C C}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	120	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	60	105	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	65	120	Ω

Table 7: $\quad R_{\text {ON }}$ resistance per switch for types 74HC4051 and 74HCT4051 ...continued
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a Yn or $\overline{\text { terminal, whichever is assigned as an input. }}$
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4051: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4051: $V_{C C}-G N D=4.5 \mathrm{~V}$ and $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\Delta \mathrm{R}_{\text {ON (max) }}$	maximum ON-state resistance variation between any two channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\text {EE }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	9	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	8	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	6	-	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$							
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	ON-state resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	165	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON-state resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	150	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	130	Ω
		$V_{\text {is }}=V_{\text {CC }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	150	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$							
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON-state resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$					
		$\mathrm{V}_{\text {CC }}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	270	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	195	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON-state resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	160	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$		-	-	180	Ω

[1] At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON -state resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

$$
\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{S}} / \mathrm{I}_{\mathrm{S}}
$$

$$
V_{\text {is }}=0 V \text { to } V_{C C}-V_{E E}
$$

(1) $V_{C C}=4.5 \mathrm{~V}$
(2) $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$

Fig 9. Typical $R_{\text {ON }}$ as a function of input voltage $V_{\text {is }}$

Fig 8. Test circuit for measuring R_{ON}
Table 8: \quad Static characteristics type 74HC4051
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	2.8	1.8	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	4.3	2.7	V
$I_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{EEE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{OFF})}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.4	$\mu \mathrm{A}$

Table 8: Static characteristics type 74HC4051 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {(ON })}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure 11 }} \end{aligned}$	-	-	± 0.4	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.5	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.7	V
	input leakage current	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 4.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \text {; } \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 11 } \end{aligned}$	-	-	± 4.0	$\mu \mathrm{A}$
	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.7	V

Table 8: Static characteristics type 74HC4051 ...continued
Voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $Y n$ or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 4.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure 11 }} 1 \end{aligned}$	-	-	± 4.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$

Fig 10. Test circuit for measuring OFF-state current

Fig 11. Test circuit for measuring ON-state current

Table 9: \quad Static characteristics type 74HCT4051
Voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.4	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 0.4	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \text {; other inputs at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
	Sn input		-	50	180	$\mu \mathrm{A}$
	$\overline{\mathrm{E}}$ input		-	50	180	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.5	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 4.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 11 } \end{aligned}$	-	-	± 4.0	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{\text {OS }}=V_{C C} \\ & \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \text {; other inputs at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
	Sn input		-	-	225	$\mu \mathrm{A}$
	$\overline{\mathrm{E}}$ input		-	-	225	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$
74HC_HCT4051_3			© Koninklijk Philips Electronics N.V. 2005. All rights reserved.			
Product d	ata sheet	Rev. 03 - 19 December 2005				

Table 9: Static characteristics type 74HCT4051 ...continued Voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 10 } \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 4.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 11 } \end{aligned}$	-	-	± 4.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{O S}=V_{C C} \\ & \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \text {; other inputs at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
	Sn input		-	-	245	$\mu \mathrm{A}$
	$\overline{\mathrm{E}}$ input		-	-	245	$\mu \mathrm{A}$

12. Dynamic characteristics

Table 10: Dynamic characteristics type 74HC4051
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 14.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$\begin{aligned} & \text { tpHL, } \\ & \text { tpLH } \end{aligned}$	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	14	60	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	4	10	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns
$\begin{aligned} & \text { tpZH, } \\ & \text { tpZL }^{\text {tel }} \end{aligned}$	turn-ON time	$R_{L}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	72	345	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	29	69	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	22	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	21	59	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	18	51	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	66	345	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	28	69	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	20	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	19	59	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	51	ns

Table 10: Dynamic characteristics type 74HC4051 ...continued
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{P} P \mathrm{ZZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13					
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	58	290	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	31	58	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	18	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	17	49	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	18	42	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	61	290	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	25	58	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		-	19	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	18	49	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	18	42	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance (per switch)		[1] [2]	-	25	-	pF
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$							
$\mathrm{t}_{\mathrm{PHL}}$, tpLH	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	75	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	13	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	10	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13					
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	430	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	86	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	73	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	64	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	430	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	86	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	73	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	64	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see Figure 13					
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	365	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	73	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	62	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	53	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	365	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	73	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	62	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	53	ns

Table 10: Dynamic characteristics type 74HC4051 ...continued
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=$	$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$					
$t_{\text {PHL }}$,	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12				
$t_{\text {PLH }}$		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	12	ns
$\mathrm{t}_{\text {PZH }}$,	turn-ON time	$R_{L}=1 \mathrm{k} \Omega$; see Figure 13				
$t_{\text {PZL }}$	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	520	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	104	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	88	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	77	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	520	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	104	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	88	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	77	ns
$t_{\text {PHZ }}$,	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see Figure 13				
tpLz	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	435	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	87	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	74	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	72	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	435	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	87	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	74	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$			72	ns

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ switch capacitance in pF;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
[2] For 74 HC 4051 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

Table 11: Dynamic characteristics type 74HCT4051
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ and $V_{C C}=4.5 \mathrm{~V}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, $t_{\text {PLH }}$	propagation delay $V_{\text {is }}$ to $V_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see $\underline{\text { Figure } 12}$				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	4	8	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$V_{E E}=0 \mathrm{~V}$	-	26	55	ns
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	22	-	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	39	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	28	55	ns
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	24	-	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	39	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	19	45	ns
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	16	-	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	32	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	23	45	ns
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	20	-	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	32	ns
CPD	power dissipation capacitance (per switch)		[1] [2] -	25	-	pF

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}}, \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	propagation delay$V_{\text {is }} \text { to } V_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	10	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn-ON time	$R_{L}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	69	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	49	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	69	ns
		$\mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	-	49	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	40	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	40	ns

$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$t_{\text {PHL }}$, $t_{\text {PLH }}$	propagation delay$V_{\text {is }} \text { to } V_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	18	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-		12	ns

Table 11: Dynamic characteristics type 74HCT4051 ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ and $V_{C C}=4.5 \mathrm{~V}$ unless specified otherwise; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}}, \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	83	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	59	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	83	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	59	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$R_{L}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	68	ns
		$\mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	-	48	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	68	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	48	ns

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
[2] For 74 HCT 4051 the condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.

13. Waveforms

Fig 12. Input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\text {os }}\right)$ propagation delays

a. Input pulse definition

Definitions test circuit:
$R_{L}=$ load resistor.
$C_{L}=$ load capacitance including jig and probe capacitance.
$R_{T}=$ termination resistance should be equal to the output impedance Z_{0} of the pulse generator.
b. Load circuitry

Test data is given in Table 13.
Fig 14. Switching times

Table 13: Test data

Test	Input	Switch	
	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}} \underline{[\underline{]}}$	$\mathbf{V}_{\text {is }}$	
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	6 ns	$\mathrm{~V}_{\mathrm{CC}}$	V_{EE}
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 ns	$\mathrm{~V}_{\mathrm{EE}}$	V_{CC}
$\mathrm{t}_{\text {PHL }}, t_{\text {PLH }}$	6 ns	pulse	open

[1] When measuring $f_{\max }$ there is no constraint to t_{r} and t_{f} with 50% duty factor (<2 ns).

14. Additional dynamic characteristics

Table 14: Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{d}_{\text {sin }}$	sine-wave distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 15				
		$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=4.0 \mathrm{~V}$	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=8.0 \mathrm{~V}$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=4.0 \mathrm{~V}$	-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=8.0 \mathrm{~V}$	-	0.06	-	\%
$\alpha_{(t) \text { OFF }}$	switch OFF-state signal feed-through suppression	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 16	[1]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-50	-	dB
$\mathrm{V}_{\text {ct }(p-p)}$	crosstalk voltage (peak-to-peak value)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \overline{\mathrm{E}}$ or Sn square-wave between V_{CC} and $G N D ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$; see Figure 17				
	between $\overline{\mathrm{E}}$ or Sn and Yn or Z	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	220	-	mV
$\overline{f_{h(-3 d B)}}$	-3 dB high frequency	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 18	[2]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	170	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	180	-	MHz
$\mathrm{C}_{\text {s }}$	switch capacitance					
	independent input/output Yn		-	5	-	pF
	common input/output Z		-	25	-	pF

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig 15. Test circuit for measuring sine-wave distortion

a. Feed-through as a function of frequency

b. Test circuit
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.
Fig 16. Typical switch OFF signal feed-through as a function of frequency

The crosstalk resembles the oscilloscope output shown in the left-hand drawing above.
Fig 17. Crosstalk between any control input and any switch

a. Typical frequency response

b. Test circuit
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.
Fig 18. Frequency response

15. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	$\underset{\mathrm{min}}{\mathrm{A}_{1}}$ min.	A_{2} max.	b	b_{1}	b_{2}	c	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	$\mathbf{M}_{\mathbf{H}}$	w	$\begin{gathered} \mathrm{Z}^{(1)} \\ \max . \end{gathered}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.02	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.03

Note

1. Plastic or metal protrusions of $0.25 \mathrm{~mm}(0.01 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT38-4					-	

Fig 19. Package outline SOT38-4 (DIP16)

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \\ & \hline \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \\ & \hline \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & \hline 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			-	

Fig 20. Package outline SOT109-1 (SO16)

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$	8° 0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT338-1		MO-150		\square ¢	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

Fig 21. Package outline SOT338-1 (SSOP16)

DIMENSIONS (mm are the original dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(2)}$	e	HE_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	5.1	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8° 0

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT403-1		MO-153		-	$\begin{aligned} & -99-12-27 \\ & 03-02-18 \end{aligned}$

Fig 22. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;
16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$

Fig 23. Package outline SOT763-1 (DHVQFN16)

16. Revision history

Table 15: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC_HCT4051_3	20051219	Product specification	-	74HC_HCT4051_CNV_2	
Modifications:	-The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors.				
	•Section 5 "Ordering information" and Section 15 "Package outline": modified to include type numbers 74HC4051BQ and 4HC4T051BQ (DHVQFN16 package).				

17. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

22. Contents

1 General description 1
2 Features 1
3 Applications 1
4 Quick reference data 2
5 Ordering information. 3
6 Functional diagram 4
7 Pinning information 6
7.1 Pinning 6
7.2 Pin description 6
8 Functional description 7
8.1 Function table 7
9 Limiting values 7
10 Recommended operating conditions. 8
11 Static characteristics 9
12 Dynamic characteristics 15
13 Waveforms 19
14 Additional dynamic characteristics 22
15 Package outline 25
16 Revision history. 30
17 Data sheet status 31
18 Definitions 31
19 Disclaimers. 31
20 Trademarks. 31
21 Contact information 31
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 19 December 2005 Document number: 74HC_HCT4051_3
Published in The Netherlands

